If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+10b-14=-11
We move all terms to the left:
b^2+10b-14-(-11)=0
We add all the numbers together, and all the variables
b^2+10b-3=0
a = 1; b = 10; c = -3;
Δ = b2-4ac
Δ = 102-4·1·(-3)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{7}}{2*1}=\frac{-10-4\sqrt{7}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{7}}{2*1}=\frac{-10+4\sqrt{7}}{2} $
| 1/3m+1=7 | | 3(7x-12)=-14 | | -1-7y-15=0 | | 5-7y-15=0 | | 21=7-5x | | 4-7y-15=0 | | 1-7y-15=0 | | 2-3x=6+2 | | m²-2m+5=0 | | 1(-4+6x)=1x+2(x+9) | | V^2+10v-14=-11 | | Mx(13/16)=39 | | -6=8w-5 | | -3/5=4/5w-1/2 | | (3x-4)/8=(x+2)/3 | | X(13/16l=39 | | 9(y-2)=4=31 | | 3/5x=1/2x+4 | | x^2+4x=x+10x2+4x=x+10 | | -4-4x=6x-6 | | 2(x+7)-3+5x=4x+3x+11 | | x−4+1=−3−x | | -19h+12=-14h-8 | | 8x-7(-5)=-3 | | 1/2x-2/3x=3 | | 1/2×-4+1=-3-1/2x | | x2+12x+6=0 | | 21=2m+8+1 | | 10x-43=39+(x-10) | | 12=-n+4n | | 2(c-6)=9+2 | | 16/8=x/1 |